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Abstract—A fast forward feature selection algorithm is pre-
sented in this paper. It is based on a Gaussian mixture model
(GMM) classifier. GMM are used for classifying hyperspectral
images. The algorithm selects iteratively spectral features that
maximizes an estimation of the classification rate. The estimation
is done using the k-fold cross validation. In order to perform
fast in terms of computing time, an efficient implementation is
proposed. First, the GMM can be updated when the estimation of
the classification rate is computed, rather than re-estimate the full
model. Secondly, using marginalization of the GMM, sub models
can be directly obtained from the full model learned with all the
spectral features. Experimental results for two real hyperspectral
data sets show that the method performs very well in terms
of classification accuracy and processing time. Furthermore, the
extracted model contains very few spectral channels.

Index Terms—Hyperspectral image classification, nonlinear
feature selection, Gaussian mixture model, parsimony.

I. INTRODUCTION

Since the pioneer paper of J. Jimenez and D. Landgrebe [,
it is well known that hyperspectral images need specific
processing techniques because conventional ones made for
multispectral/panchromatic images do not adapt well to hyper-
spectral images. Generally speaking, the increasing number of
spectral channels poses theoretical and practical problems [2].
In particular, for the purpose of pixel classification, the spectral
dimension needs to be handled carefully because of the
“Hughes phenomenon” [3]]: with a limited training set, beyond
a certain number of spectral features, a reliable estimation of
the model parameters is not possible.

Many works have been published since the 2000s to address
the problem of classifying hyperspectral images. A non-
exhaustive list should include techniques from the machine
learning theory (Support Vector Machines, Random Forest,
neural networks) [4], statistical models [1] and dimension
reduction [S]. SVM, and kernel methods in general, have
shown remarkable performances on hyperspectral data in terms
of classification accuracy [6]. However, these methods may
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suffer from a high computational load and the interpretation
of the model is usually not trivial.

In parallel to the emergence of kernel methods, the reduction
of the spectral dimension has received a lot of attention.
According to the absence or presence of training set, the
dimension reduction can be unsupervised or supervised. The
former try to describe the data with a lower number of features
that minimize a reconstruction error measure, while the latter
try to extract features that maximize the separability of the
classes. One of the most used unsupervised feature extraction
method is the principal component analysis (PCA) [1]. But
it has been demonstrated that PCA is not optimal for the
purpose of classification [7]. Supervised method, such as
the Fisher discriminant analysis or the non-weighted feature
extraction have shown to perform better for the purpose
of classification. Other feature extraction techniques, such
as independent component analysis [8]], have been applied
successfully and demonstrate that even SVM can benefits from
feature reduction [9], [[LO]. However, conventional supervised
techniques suffer from similar problems than classification
algorithms in high dimensional space.

Rather than supervised and unsupervised techniques, one
can also distinguish dimension reduction techniques into fea-
ture extraction and feature selection. Feature extraction returns
a linear/nonlinear combination of the original features, while
feature selection returns a subset of the original features.
While feature extraction and feature selection both reduce
the dimensionality of the data, the latter is much more inter-
pretable for the end-user. The extracted subset corresponds to
the most important features for the classification, i.e., the most
important wavelengths. For some applications, these spectral
channels can be used to infer mineralogical and chemical
properties [[11]].

Feature selection techniques generally need a criterion, that
evaluates how the model built with a given subset of features
performs, and an optimization procedure that tries to find the
subset of features that maximizes/minimizes the criterion [12].
Several methods have been proposed according to that setting.
For instance, an entropy measure and a genetic algorithm have
been proposed in [[13, Chapter 9], but the band selection was
done independently of the classifier, i.e., the criterion was
not directly related to the classification accuracy. Jeffries
Matusita (JM) distance and steepest-ascent like algorithms
were proposed in [[14]]. The method starts with a conventional
sequential forward selection algorithm, then the obtained set
of features is updated using local search. The method has



been extended in [15] where a multiobjective criterion was
used to take into account the class separability and the spatial
variability of the features. JM distance and exhaustive search
as well as some refinement techniques have been proposed
also in [12]. However rather than extracting spectral features,
the algorithm returns the average over a certain bandwidth of
contiguous channels, which can make the interpretation diffi-
cult and often leads to select a large part of the electromagnetic
spectrum. Similarly, spectral intervals selection was proposed
in [[16], where the criterion used was the square representation
error (square error between the approximate spectra and the
original spectra) and the optimization problem was solved
using dynamic programming. These two methods reduce the
dimensionality of the data, but cannot be used to extract
spectral variables. Recently, forward selection and genetic
algorithm driven by the classification error minimization has
been proposed in [17].

Feature selection has been also proposed for kernel methods.
A recursive scheme used to remove features that exhibit few
influence on the decision function of a nonlinear SVM was
discussed in [18]]. Alternatively, a shrinkage method based on
¢1-norm and linear SVM has been investigated by Tuia et
al. [19]]. The authors proposed a method where the features
are extracted during the training process. However, to make
the method tractable in terms of computational load, a linear
model is used for the classification, which can limit the
discriminating power of the classifier. In [20], a dependence
measure between spectral features and thematic classes is
proposed using kernel evaluation. The measure has the ad-
vantage to be applicable to multiclass problem making the
interpretation of the extracted features easier.

Feature selection usually provides good results in terms of
classification accuracy. However, several drawbacks can be
identified from the above mentioned literature:

o It can be very time consuming, in particular when non-
linear classification models are used.

o When linear models are used for the selection of fea-
tures, performances in terms of classification accuracy are
not satisfying and therefore another nonlinear classifier
should be used after the feature extraction.

o For multiclass problem, it is sometimes difficult to in-
terpret the extracted features when a collection of binary
classifiers is used (e.g., SVM).

In this work, it is proposed to use a forward strategy, based
on [21], that uses an efficient implementation scheme and
allows to process a large amount of data, both in terms of
number of samples and variables. The method, called nonlin-
ear parsimonious feature selection (NPES), selects iteratively
a spectral feature from the original set of features and adds
it to a pool of selected features. This pool is used to learn a
Gaussian mixture model (GMM) and each feature is selected
according to a classification rate. The iteration stops when the
increased in terms of classification rate is lower than a user
defined threshold or when the maximum number of features is
reached. In comparison to other feature extraction algorithms,
the main contributions of NPFS is the ability to select spectral
features through a nonlinear classification model and its high

computational efficiency. Furthermore, NPFS usually extracts
a very few number of features (lower than 5 % of the original
number of spectral features).

The remaining of the paper is organized as follows. Sec-
tion presents the algorithm with the Gaussian mixture
model and the efficient implementation. Experimental results
on three hyperspectral data sets are presented and discussed in
Section Conclusions and perspectives conclude the paper
in Section [V1

II. NON LINEAR PARSIMONIOUS FEATURE SELECTION

The following notations are used in the remaining of the
paper. S = {x;,y;},_, denotes the set of training pixels,
where x; € R? is a d-dimensional pixel vector, y; = 1,...,C
is its corresponding class, C' the number of classes, n the total
number of training pixels and n,. the number of training pixels
in class c.

A. Gaussian mixture model
For a Gaussian mixture model, it is supposed that the

observed pixel is a realization of a d-dimensional random
vector such as

c
p(x) = Zﬂ'cp(X|C), (D

where 7. is the proportion of class ¢ (0 < n. < 1 and
Zle m. = 1) and p(x|c) is a d-dimensional Gaussian
distribution, i.e.,

pxle) = a0 (506 0B k- ).

with p, being the mean vector of class ¢, 3. being the co-
variance matrix of class ¢ and |X.| its determinant. Following
the maximum a posteriori rule, a given pixel is classified to
the class ¢ if p(c|x) > p(k|x) for all k =1,...,C. Using the
Bayes formula, the posterior probability can be written as
elx) = — TPl

PP = S

Therefore, the maximum a posteriori rule can be written as

2

x belongs to ¢ < ¢ = arg k_rrllaxcﬂkp(x|k:). (3)

By taking the log of eq. (3) the final decision rule is obtained
(also known as quadratic discriminant function)

Qc(x) = —(x — p) I (x = p) — In(|Be]) + 2In(me). (4)

Using standard maximization of the log-likelihood, the esti-
mator of the model parameters are given by
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with n, is the number of sample of class c.



For GMM, the “Hughes phenomenon” is related to the
estimation of the covariance matrix. If the number of training
samples is not sufficient for a good estimation the compu-
tation of the inverse and of the determinant in eq.(@) will
be very numerically unstable, leading to poor classification
accuracy. For instance for the covariance matrix, the number
of parameters to estimate is equal to d(d + 1)/2: if d = 100
then 5050 parameters have to be estimated then the minimum
number of training samples for the considered class should be
at least 5050. Note in that case the estimation will be possible
but not accurate. Feature selection tackles this problem by
allowing the construction of GMM with a reduced number p
of variables, with p << d and p(p +1)/2 < n..

B. Forward feature selection

The forward feature selection works as follow [22, Chapter
3]. It starts with an empty pool of selected features. At each
step, the feature that most improves an estimation of the
classification rate is added to the pool. The algorithm stops
either if the increase of the estimated classification rate is too
low or if the maximum number of features is reached.

The k-fold cross-validation (k-CV) is used in this work
to estimate the classification rate. To compute the k-CV, a
subset is removed from S and the GMM is learned with the
remaining training samples. A test error is computed with
the removed training samples used as validation samples. The
process is iterated k times and the estimated classification rate
is computed as the mean test error over the k& subsets of S.

The efficient implementation of the NPFS relies on a fast
estimation of the parameters of the GMM when the k-CV
is computed. In the following, it will be shown that by
using update rules of the parameters and the marginalization
properties of the Gaussian distribution, it is possible to perform
k-CV and forward selection quickly. As a consequence, the
GMM model is learned only one time during the whole
training step. The algorithm [I] presents a pseudo code of the
proposed method.

1) Fast estimation of the model on S"": In this subsec-
tion, it is shown that each parameter can be easily updated
when a subset is taken off S.

Proposition 1 (Proportion): The update rule for the propor-
tion 1s

~-n
nal — v,

~An—v __ c
Tl = p— ®)
where 777" and 7] are the proportions of class ¢ computed
over n — v and n respectively, v is the number of removed
samples from S, v, is the number of removed samples from
class ¢ such as 25:1 Ve = V.

Proposition 2 (Mean vector): The update rule for the mean
vector is

ﬂz,cfuc _ Nefb, — Vel (9)

Ne — Ve

—ve

where fi;° and fi)° are the mean vectors of class ¢ com-
puted over the n. and n. — v, training samples respectively,
fu° is the mean vector of the v, removed samples from class
c.

Proposition 3 (Covariance matrix): The update rule for the
covariance matrix is

A Ne—Ve _ Ne A Ne Ve A Ve
c (nc _nyﬁ) c (nc — I/C) . (10)
e —1)? (Bee — ) (B — Be°)
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where 2? and 2?7 are the covariance matrices of class
¢ computed over the n, and n, — v, training samples respec-
tively.

2) Particular case of leave-one-out cross-validation: When
very few training samples are available, it is sometimes
necessary to resort to leave-one-out cross-validation (k = n).
Update rules are still valid, but it is also possible to get a
fast update of the decision function. If the removed sample
does not belong to class ¢, only the proportion term in eq. (@)
change, therefore the updated decision rule can be written as:

Qe (xn) = Q= (xn) +21n (

where Q"¢ and QU<~! are the decision rules for class c
computed with n. and n, — 1 samples respectively. If the
removed sample x, belongs to class c¢ then updates rules
become:

n—l).

(1)

Proposition 4 (Proportion-loocv):

~n—1 nﬁ-g —1
= — 12
rot= e (12)
Proposition 5 (Mean vector-loocv):
e
~Ane—1 Nelle — Xp
== 13
% e (13)
Proposition 6 (Covariance matrix-loocv):
EZCfl _ Ne 12”‘::/c
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where n. — 1 denotes that the estimation is done with only
n. — 1 samples rather than the n. samples of the class.

Update rules have been proposed in [23] for the leave-one-
out case. Authors have proposed a way to compute the inverse
of the covariance matrix with a low computational cost when
one sample is removed. It is based on the Sherman-Morrison-
Woodbury formula. In their approach, the inverse of the
covariance matrix is computed explicitly in[d] In this work, we
choose to not compute the inverse but rather solve the linear
problem X~ 'x. This approach is more demanding in terms of
processing time (still fast when the number of variables if low
~ 10-15) but far more robust in terms of numerical stability.
An update rule for the case where the sample belongs the class
c can be written by using the Cholesky decomposition of the
covariance matrix and rank-one downdate, but the downdate
step is not numerically stable and not used here.

3) Marginalization of Gaussian distribution: To get the
GMM model over a subset of the original set of features, it
is only necessary to drop the non-selected features from the
mean vector and the covariance matrix [24]. For instance, let
X = [Xs,Xns| Where x4 and X, are the selected variables and



Algorithm 1 NPFS pseudo code

Require: S, k, delta, maxvariable
1: Randomly cut & into k subsets such as S1U. . .USy, = S and §;NS; = 0

2: Learn the full GMM with S
3: Initialize the set of selected variables ¢, to empty set (|ps| = 0) and
available variables ¢, to the original set of variables (|pq| = d)

4: while |¢,| < maxvariable do

5: for all S, C S do

6: Update the model using eq. (8), ®) and (I0) (or their loocv
counterparts) according to Sy,

7: for all s C ¢, do

8: Compute the classification rate on S, for each set of variables

(s M s using the marginalization properties

9: end for

10: end for

11: Average the classification rate over the k-fold

12: if Improvement in terms of classification rate w.r.t. previous iteration

is lower than delta then

13: break

14:  else

15: Add the variable s corresponding to the maximum classification
rate to s and remove it from g

16:  end if

17: end while

the non-selected variables respectively, the mean vector can be
written as

o= [ty ] (15)
and the covariance matrix as
Es,s Es,ns
¥ = Ens,s 2ns,ns (16)

The marginalization over the non-selected variables shows that
X is also a Gaussian distribution with mean vector p, and
covariance matrix X, . Hence, once the full model is learned,
all the sub-models built with a subset of the original variables
are available at no computational cost.

III. EXPERIMENTAL RESULTS
A. Data

Two data sets have been used in the experiments. The
first data set has been acquired in the region surrounding the
volcano Hekla in Iceland by the AVIRIS sensor. 157 spectral
channels from 400 to 1,840 nm were recorded. 12 classes
have been defined for a total of 10,227 referenced pixels.
The second data set has been acquired by the ROSIS sensor
during a flight campaign over Pavia, nothern Italy. 103 spectral
channels were recorded from 430 to 860 nm. 9 classes have
been defined for a total of 42776 referenced pixels.

For each data set, 50, 100 and 200 training pixels per class
were randomly selected and the remaining referenced pixels
were used for the validation. 50 repetitions were done for
which a new training set have been generated randomly.

B. Competitive methods

Several conventional feature selection methods have been
used as baseline.

e Recursive Feature Elimination (RFE) for nonlinear
SVM [18]]. In the experiment, a Gaussian kernel was used.

[ 1n-NPFS
150 [C15-NPFS
[ ISVMy,
I RFE
100
N
50 |-
o (EOoL OmLd ool
T T T
50 100 200

Number of training samples per class

Fig. 1. Mean number 75 of selected features for the different methods for
Hekla data set. The red line indicates the original number of spectral features.
Projected ;1 SVM is not reported because the mean number of extracted
features was too high (e.g., 6531 for n.=50).

e Linear SVM with ¢; (SVMy,) constraint on the fea-
ture vector [19] based on the LIBLINEAR implemen-
tation [25]].

o To overcome the limitation of the linear model used in LI-
BLINEAR, an explicit computation of order 2 polynomial
feature space has been used together with LIBLINEAR
(SVMZ). Formally, a nonlinear transformation ¢ has
been apply on the original samples:

R —» RP
x=[x1,...,2q] — ¢x)= [:cl,...,xd,xf,xlxg,...
T1Tg, T2, o3, . .. ,x?l]
with p = (2‘5‘1). For Hekla data and University of Pavia

data, the dimension p of the projected space is 12561 and
5460, respectively.

For comparison, a SVM with a Gaussian kernel and a order
2 polynomial kernel classifier, based on the LIBSVM [26],
with all the variables have been used too.

For the linear/nonlinear SVM, the penalty parameter and
the kernel hyperparameters were selected using 5-fold cross-
validation. For NPFS, the threshold (delta in Algorithm |I|)
was set to 0.5% and the maximum number of extracted
features was set to 20. The estimation of the error has been
computed with a leave-one-out CV (n-NPFS) and a 5-fold
CV (5-NPFES). Each variable has been standardized before the
processing (i.e., zero mean and unit variance).

C. Results

The mean accuracies and the variance over the 50 runs
are reported in Table |I] and Table The mean numbers of
extracted features for the different methods are reported in
Figure [I] and Figure 2]

From the tables, it can be seen that there is no difference in
the results obtained with n-NPFS or 5-NPFS. They perform
equally on both data sets in terms of classification accuracy
or number of extracted features. However, 5-NPFS is much
faster in terms of computation time.

RFE and SVMg,s provide the best results in terms of
classification accuracy, except for the Hekla data set and



TABLE I
CLASSIFICATION ACCURACIES FOR HEKLA DATA SET. THE RESULTS CORRESPOND TO THE MEAN VALUE AND VARIANCE OF THE OVERALL ACCURACY
OVER THE 50 REPETITIONS. THE BEST RESULT FOR EACH TRAINING SETUP IS REPORTED IN BOLD FACE. n-NPFS AND 5-NPFS CORRESPOND TO THE
NPFS COMPUTED WITH THE LEAVE-ONE-OUT AND 5-FOLD CROSS-VALIDATION, RESPECTIVELY. RFE, SVM,, AND SVM?1 CORRESPOND TO THE
RECURSIVE FEATURE EXTRACTION SVM, THE LINEAR SVM WITH 1 CONSTRAINT AND THE LINEAR SVM WITH ¢1 WITH THE EXPLICIT ORDER 2
POLYNOMIAL FEATURE SPACE, RESPECTIVELY. SVMpory AND SVMgauss CORRESPOND TO THE CONVENTIONAL NONLINEAR SVM WITH A ORDER 2
POLYNOMIAL KERNEL AND GAUSSIAN KERNEL, RESPECTIVELY.

Ne \ n-NPFS 5-NPFS RFE SVMy, SVMZ SVMpoly SVMgauss

50 \ 9225 +12 924+£12 902+18 903+10 91.6+06 846+16 904 =£1.6

100 \ 948 £0.7 946+06 956 +03 939+05 948401 914+04 95603

200 \ 959 +£03 958+03 968 +11 956401 963+0.1 955401 968+ 1.1

TABLE Il

CLASSIFICATION ACCURACIES FOR UNIVERSITY OF PAVIA DATA SET. SAME NOTATIONS AS IN TABLE[

Ne ‘ n-NPFS 5-NPFS RFE SVMy, SVM?1 SVMoy SVMgauss

50 \ 822 +44 834+76 847+40 751425 8l0+£28 829134 848+ 34

100 ‘ 863 £32 859+31 884+09 773+14 836+13 865+16 884+14

200 ‘ 877 +£31 879+19 908 +03 785+07 8.5+04 8.8+06 908+ 03
NPFS creasing drastically the overall accuracy. For instance, for the

n-
100 |- Hekla data set and n. = 50, only 7 spectral features are used to
— 1| | =3 5-NPFsS . . .
build the GMM and leads to the best classification accuracy.
80 - CISVM, . ) S
[ REE A discussion on the extracted features is given in the next
Y 60 |- subsection.

= 0l The figure [3] presents the average classification rate of 5-
NPFS, SVM with a Gaussian kernel and a linear SVM applied
20 |- on the features selected with 5-NPFS. 20 repetitions have
oo o oo been done on the University data set with n.=50. The optimal
0 ‘ ‘_ ‘_ parameters for SVM and linear SVM have been selected using
50 100 200 5-fold cross-validation. From the figure, it can be seen that

Number of training samples per class

Fig. 2. Mean number s of selected features for the different methods for
University of Pavia data set. The red line indicates the original number of
spectral features. Projected £; SVM is not reported because the mean number
of extracted features was too high (e.g., 5110 for n.=50).

n. = 50. From the figure, it can be seen that the number
of extracted features is almost equal to original number of
spectral features, meaning that in these experiments RFE is
equivalent to SVMg,s. Hence, RFE was not able to extract
few relevant spectral features.

{1 SVM applied on the original features or the projected
features is not able to extract relevant features. In terms
of classification accuracy, the linear SVM does not perform
well for the University of Pavia data set. Nonlinear /; SVM
provides much better results for both data sets. In comparison
to the non sparse nonlinear SVM computed with an order 2
polynomial kernel, ¢; nonlinear SVM performs better in terms
of classification accuracy for the Hekla data while it performs
worst for the University of Pavia data.

In terms of number of extracted features, NPFS provides
the best results, by far, with an average number of extracted
features equal to 5% of the original number. All the others
methods were not able to extract few features without de-

the three algorithms have similar trends. When the number
of features is relatively low (here lower than 15) GMM
performs the best, but when the number of features increases
too much, SVM (non linear and linear) performs better in
terms of classification accuracy. It is worth noting that such
observations are coherent with the literature: SVM are known
to perform well in high dimensional space, while GMM is
more affected by the dimension.

The mean processing time for the University of Pavia data
set for several training set sizes is reported in Table [ It
includes parameter optimization for SVMgae and SVMy,.
Note that the RFE consists in several SVMg,yss Optimizations,
one for each feature removed (hence, if 3 features are removed,
the mean processing time is approximately multiplied by 3).
It can be seen that the 5-NPFS method is a little influenced
by the size of the training set: what is important is the number
of (extracted) variables. For ny, = 50, the processing time is
slightly higher because of overload due to parallelization pro-
cedure. n-NPFS is the more demanding in terms of processing
time and thus should be used only when the number of training
samples is very limited. Finally, it is important to underline
that the NPFS is implemented in Python while SVM used a
state of the art implementation in C++ [26].

From these experiments, and from a practical viewpoint,
NPFS is a good compromise between high classification
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Fig. 3. Classification rate in function of the number of extracted features.

Continuous line corresponds to 5-NPFS, dashed line to SVM with a Gaussian
kernel and dash-doted line to a linear SVM.

TABLE III
MEAN PROCESSING TIME IN SECONDS IN FUNCTION OF THE NUMBER OF
SAMPLES PER CLASS FOR THE UNIVERSITY OF PAVIA DATA SET. 20
REPETITIONS HAVE BEEN DONE ON LAPTOP WITH 8 GB OF RAM AND
INTEL(R) CORE(TM) 17-3667U CPU @ 2.00GHZ PROCESSOR.

Ng 50 100 200 400
SVMguss 11 40 140 505
SVMy, 52 115 234 498
n-NPFS 242 310 472 883

5-NPFS 35 31 29 43

accuracy and sparse modeling.

D. Discussion

The extracted channels by 5-NPFES and n-NPFS were com-
pared for one training set of the University of Pavia data set:
two channels were the same for both methods, 780nm and
776nm; two channels were very close, 555nm and 847nm
for 5-NPFS and 551nm and 855nm for n-NPFS; one channel
was close, 521nm for 5-NPFS and 501nm for n-NPFS. The
other channel selected with n-NPFS is 772nm. If the process
is repeated, the result is terms of features selected with n-
NPFS and 5-NPFS is similar: on average 35% of the selected
features are identical (not necessarily the first ones) and the
others selected features are close in terms of wavelength.

The influence of the parameter delta has been investigated
on the University of Pavia data set. 20 repetitions have been
done with n, = 50 for several values of delta. Results
are reported on figure 4| From the figure, it can be seen that
when delta is set to a value larger than approximately 1%, the
algorithm stops too early and the number of selected features is
too low to perform well. Conversely, setting delta to a small
value does not change the classification rate, a plateau being
reached for delta lower than 0.5%. In fact, because of the
“Hughes phenomenon”, adding spectral features to the GMM
will first lead to an increase of the classification rate but then
(after a possible plateau) the classification rate will decrease,

34 T T T T
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Fig. 4. The dotted line and the crossed line represent the mean error rate and
the average number of selected features, respectively, as a function of delta.
The simulation was done on the University of Pavia data set, with n. = 50
and for the 5-NPFS algorithm.

i.e., the improvement after two iterations of the algorithm will
be negative.

Figure [3] presents the most selected features for the Uni-
versity of Pavia data set. 1000 random repetitions have been
done with n,=200 and the features shaded in the figure have
been selected at least 10% times (i.e., 100 times over 1000)
using 5-NPFS. Five spectral domains can be identified, two
from the visible range and three from the near infrared range.
In particular, it can be seen that spectral channels from the
red-edge part are selected. The width of the spectral domain
indicates the variability of the selection. The high correlation
between adjacent spectral bands makes the variable selection
“unstable”, e.g., for a given training set, the channel ¢ would
be selected but for another randomly selected training set it
might be the channel £+ 1 or ¢ — 1. It is clearly a limitation
of the proposed approach.

To conclude this discussion, similar spectral channels are
extracted with n-NPFS and 5-NPFS, while the latter is much
times faster. Hence, n-NPFS should be only used when very
limited number of samples is available. A certain variability
is observed in the selection of the spectral channels due to the
high correlation of adjacent spectral channels and the step-wise
nature of the method.

IV. CONCLUSION

A nonlinear parsimonious feature selection algorithm for
the classification of hyperspectral images and the selection of
spectral variables has been presented. Using a Gaussian mix-
ture model classifier, spectral variables are extracted iteratively
based on the cross-validation estimate of the classification rate.
An efficient implementation is proposed that takes into account
some properties of Gaussian mixture model: a fast update of
the model parameters and a fast access to the sub-models.
Experimental results show that the proposed method is able to
select few relevant features, and outperform standard SVM-
based sparse algorithms while reaching similar classification
rates to those obtained with SVM. Furthermore, in comparison
to SVM based feature selection algorithm, multiclass problem
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Fig. 5. Most selected spectral domain for the University of Pavia data set.
Gray bars correspond to the most selected parts of the spectral domain.
Horizontal axis corresponds to the wavelength (in nanometers). The mean
value of each class is represented in continuous colored lines.

is handled by the GMM making the interpretation of the
extracted channels easier.

More investigation are needed to fully understand which
features are extracted, since the method is purely statistical. If
the red-edge has been identified, the others extracted features
are not clearly interpretable. Moreover, small variability has
been observed due to the high correlation between adjacent
bands and the step-wise procedure. To overcome this limita-
tion, a continuous interval selection strategy, as in [12]], will
be investigated. Also, a steepest-ascent search strategy could
be used to make the final solution more stable.

The python code of the algorithm is available freely for
download: |https://github.com/mfauvel/FFFS.
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