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Abstract

Classification of remotely sensed images with very high spatial resolution is investigated. The
proposed method deals with the joint use of the spatial and the spectral information provided by
the remote sensing images. A definition of an adaptive neighborhood system is considered. Based
on morphological area filtering, the spatial information associated with each pixel is modeled as
the set of connected pixels with an identical grey value (flat zone) to which the pixel belongs:
The pixel’s neighborhood is characterized by the vector median value of the corresponding flat
zone. The spectral information is the original pixel’s value, be it a scalar or a vector value. Using
kernel methods, the spatial and spectral information are jointly used for the classification through
a support vector machine formulation. Experiments on hyperspectral and panchromatic images
are presented and show a significant increase in classification accuracies for peri-urban area: For
instance, with the first data set, the overall accuracy is increased from 80% with a conventional
support vectors machines classifier to 86% with the proposed approach. Comparisons with other
contextual methods show that the method is competitive.

Keywords: Hyperspectral remote sensing images, urban area, adaptive neighborhood, area
filtering, mathematical morphology, support vectors machines, composite kernel.

1. Introduction

The classification of optical urban remote-sensing images has become a challenging problem, due
to recent advances in remote sensor technology [1]. Spatial resolution is now as high as 0.75 meter
for several satellites, e.g. IKONOS, QUICKBIRD, and soon PLEIADES: For the same location,
a panchromatic image with 0.75-meter spatial resolution and a multispectral image with 3-meter
spatial resolution are available. Moreover, new hyperspectral sensors can simultaneously collect
over a hundred spectral bands of an area, with increasing spatial resolution, e.g. 1.5 meter for
airborne sensors. As a result, with such resolution many small objects and materials can now
be extracted with very fine accuracy for detection, classification or segmentation. For instance,
the problem of detecting or classifying urban areas in remotely-sensed images with lower spatial
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resolution has now become the even bigger problem of analyzing within urban area structures. Many
of the applications remain to be explored and specific methodologies need to be developed to handle
the complex properties of very high resolution images.

For the critical problem of land cover classification, it is conventional to use spectral information
as an input to the classifier [2]. However, this entails processing a very high volume of data with
high dimensionality: For instance, when dealing with hyperspectral images, each pixel-vector x is
composed of over hundred spectral components (dim(x) > 100) and in such a high dimensional
space, statistical estimation is a difficult task [3]. For the purpose of classification or segmentation,
these problems are related to the “curse of dimensionality”. As an example, the required number of
training pixels for a reliable estimation is related to the square of the dimensionality for a quadratic
classifier (e.g. the Gaussian Maximum Likelihood) [4]. However, in remote sensing applications,
only limited labeled reference pixels are usually available. The consequence is the so-called “Hughes
phenomenon” [Bl 6]: “ With a fized design pattern sample, recognition accuracy can first increase as
the number of measurements made on a pattern increases, but decay with measurement complezity
higher than some optimum value”. These problems are particularly important in classification of
urban remote sensing images, where it is desirable to use the information from the spectral domain
together with the information from the spatial domain. Actually, for a given pixel, it is possible
to extract the size, shape, and gray-level distribution of the structure to which it belongs [7]. This
information will not be the same if the pixel belongs to a roof or to a vegetation area. This is also
a way to discriminate various structures made of the same materials. If spectral information alone
is used, the roofs of a private house and of a larger building will be detected as the same type of
structure. But using additional spatial information — the size of the roof, for instance — it is possible
to classify these into two separate classes. Consequently, a contextual spatial-spectral classifier is
needed to better classify urban remote-sensing images.

One major problem is the definition of a convenient multivariate statistical model that exploits
both the spectral and the spatial information. Accordingly, conventional parametric statistical
methods are not appropriate for the problem of combining spatial and spectral information. Con-
sequently several methods have been proposed to analyze very high resolution remote sensing im-
ages [8]. Landgrebe and co-workers were probably the first to propose a contextual classifier, the
well-known ECHO [9]. Tt is based on a segmentation algorithm and a region based statistical clas-
sification. A Gaussian Markov Random Field (MRF) was investigated in textural discrimination
for remote sensing images segmentation in [I0], involving several strategies for the estimation of
MRF parameters. Later, Landgrebe and Jackson proposed an iterative statistical classifier based
on MRF modeling [IT]. However, MRF modeling suffers from high spatial resolution: Neighboring
pixels are highly correlated and the standard neighbor system definition does not contain enough
samples to be effective (here “sample” refers to pixel from the image, being a scalar or a vector).
Unfortunately, a larger neighbor system entails intractable computational problems, thereby lim-
iting the benefits of conventional MRF modeling. Furthermore, algorithms involving MRF-based
strategies traditionally require an iterative optimization step, such as simulated annealing, which
is extremely time consuming with high resolution data. Therefore, the use of spatial information
ought to be considered with less demanding approaches in terms of computation. Benediktsson et
al. have proposed using advanced morphological filters and a neural network based classifier as an
alternative way of performing contextual classification [12]. Rather than defining a crisp neighbor
set for every pixel, morphological filters enable the analysis of each pixel’s neighborhood accord-
ing to the structures to which it belongs. Despite good results in terms of classification accuracy,
these approaches still suffer from the high dimensionality of the data, in the spectral or the spatial



domain, and need advanced pre-processing to reduce the dimensionality (e.g. feature extraction).

Support Vector Machines (SVM) [I3] have been investigated intensively over the past few years
as an alternative approach to the usual statistical and neural classifiers in high dimensional im-
ages [14]. Recently, Guo et al. have investigated matched kernels for the classification of hyper-
spectral images [I5] where the parameters of the kernel are tuned adaptively by weighting each
spectral band, according to their usefulness. Some approaches have been proposed to include spa-
tial information in the SVM classification process. In [16], the authors built kernel functions that
use neighborhood information. In their approach, neighbors of a pixel were defined as the pixels
which belong to a square centered on the initial pixel. Then, the spatial information was modeled as
the mean and variance of the gray value distribution of neighboring pixels. Another approach can
be found in [I7], where the spatial information was modeled as textural information: The authors
proposed a wavelet-based multi-scale strategy to characterize local texture, taking the physical na-
ture of the data into account. Then the extracted textural information was used as new feature to
build a texture kernel and the final kernel was the weighted sum of a kernel made with spectral in-
formation and the texture kernel. These two previous approaches addressed the problem of merging
spatial and spectral information as kernel definition problems. A new approach has been proposed
in [I8] where inter-pixel dependency was modeled as the mean of pixel gray values from a pixel’s
neighborhood system. This information was directly included in the training process as a new
constraint for the optimization problem. However, only the spatial information from the support
vectors is used for the final classification. Another approach using kernels on a segmentation graph
was proposed by Harchaoui and Bach [I9]. But their family of kernels was defined between images
and not between structures in images, which significantly differs from the proposed approach.

The results achieved by the different approaches on several images demonstrate clearly the
importance of a contextual spatial-spectral kernel-based classifier in the analysis of remote sensing
images. A common drawback to the methods presented up to this point is the neighborhood
system definition. It is based on a low-level image analysis: Starting from each pixel, the inter-
pixel dependency is defined locally. For [I6] and [I8], the neighborhood system was a square
centered on the pixel being considered, while for the wavelet transform, the neighborhood system
is completely defined by the mother wavelet: Only neighbors in 4-connectivity are considered.
These approaches are not appropriate for pixels located on the boundary of a structure: The
fixed shape neighborhood then includes pixels from different structures. For example, as shown in
Figure (a), the classification of the marked pixel (roof) may be influenced by neighboring pixels
actually belonging to the street. In this case, the inter-pixel dependency of a structure can be
poorly estimated, leading to so-called “border effect” problems. Hence, a fixed shape or size for the
neighborhood system cannot correctly handle the definition of the neighborhood system for complex
images. In this article, the use of an advanced morphological filter is proposed to define adaptive
neighbors based on a high-level image analysis. The idea is to define neighbors in a structural sense,
i.e. to look at neighboring pixels that belong to the same structure. Note that the idea of adaptive
neighbors is also investigated in non-stationary MRF, see [20] for instance and in post-classification
procedure, see [21].

In this paper, the approach is to construct the neighborhood system, namely the morphological
neighborhood, by area filtering. The objective of the approach is to combine low-level information
(from the spectral domain) and high-level information (from the spatial domain). The original
image is filtered with a flat zone area filter. This filter removes all the structures of the image that
contain fewer pixels than a given parameter [22]. All the remaining flat zones are labeled [23]. Then
the neighborhood system of a pixel is defined as the set of pixels belonging to the same flat/labeled



zone of the filtered image. Using SVM classifiers, pixels are classified by their spectrum and the
statistical characteristics of their flat zone. Following [I6], [I7], the information is merged using a
combination of kernels (or weighted sum of kernels) during the classification process. Note that
the proposed neighborhood is defined pixelwise, rather than objectwise e.g. [24], and structures are
defined as the set of pixels that share the same neighborhood.

The paper is organized as follows. In Section[2] the area filtering approach and the neighborhood
system are discussed. SVM and kernel definition are presented in Section [3] Experimental results
are reported in Section[d] Discussions and comparisons with other contextual methods are given in
Section Bl Conclusions are drawn in Section [6l

2. Morphological Neighborhood

In this section, some basics of mathematical morphology are first reviewed. Attention is paid to
image simplification using morphological filters. Then a “flat zone” area filter is presented, leading
to the definition of the morphological neighborhood.

2.1. Introduction

Mathematical morphology provides high level non linear operators to analyze spatial inter-pixel
dependency in an image [25]. Morphological operators have already proven their potential in remote
sensing image processing [7]. Two widely used morphological operators are opening and closing
by reconstructions [26]. They are connected operators that satisfy the following assertion: If the
structure of the image cannot contain the structuring element (SE), then it is totally removed, else it
is totally preserved. For a given SE, geodesic opening or geodesic closing provides a characterization
of the size or shape of some objects present in the image: The objects that are smaller than the SE
are deleted while the others (that are bigger than the SE) are preserved. To determine the shape
or size of all elements present in an image, it is necessary to use a range of different SE sizes. This
concept is called Granulometry [23, 12 27]. When granulometry is built with connected operators,
such as opening by reconstruction [26], the image is progressively simplified while no shape-noise
is introduced. In that case, the resulting image contains only maxima which have a larger size
than the structuring element of size A\: The structuring element can fit in each maximum. If area
openings are used, the output image has its maxima that contain more than X\ pixels (the area is
seen as the number of pixels inside a maximum).

This concept has given rise to the Morphological Profile (MP) for the analysis of remote sensing
images: The concatenation of a granulometry and anti-granulometry made with geodesic filters [28].
Figure [I| gives an example of an MP obtained with 3 openings (closings) by reconstruction with a
disk, respectively, of radius 5, 13 and 21 as structuring element.

Geodesic opening and closing filters are interesting because they preserve shapes. However,
they cannot provide a complete analysis of urban areas because they only act on the extrema of the
image. Moreover, some structures may be darker than their neighbors in some parts of the image,
yet lighter than their neighbors in others. Although this problem can be partially addressed by
using an alternate sequential filter (ASF) [29], the MP thus provides an incomplete description of
the inter-pixel dependency.

In [22], Soille has proposed using self-complementary filters (the definition is given in the next
section) to analyze all the structures of an image, local extrema, be they minima or maxima, as
well as regions with intermediate gray-levels. This assumes that any given structure of interest
corresponds to one set of connected pixels. Based on an area criterion, a self-complementary flat
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Figure 1: Morphological Profile: The left part of the profile corresponds to the anti-granulometry and the right part
to the granulometry.

zone filter is proposed to remove small structures [22]. This kind of filter is well suited to the analysis
of high resolution optical images: The very high spatial resolution results in excessively detailed
data containing many irrelevant structures (e.g., cars on the road). As will be detailed in the
following, the area self-complementary filter is not a morphological filter, since the increasingness
property no longer holds. Thus the granulometry strategy used with the MP cannot be directly
applied. In this work, another approach is proposed to extract the contextual information. The
idea is to build an adaptive neighbors system for each pizel [30], which considers neighboring pixels
that belong to the same structure. In the following, the self-complementary flat zone area filter is
presented as an alternative to the original granulometry operator, and the neighborhood definition
is detailed.

2.2. Area Filtering

As explained in the previous section, classic opening/closing-based filters (granulometry or ASF)
have the same limitation, i.e. they act on the maxima/minima of the image. Hence, the simplifica-
tion of the image only occurs for structures that are extrema, whereas many structures correspond-
ing to homogeneous intermediate regions are not processed. The consequence is an incomplete
filtering of the structures of interest. Example of such problem is shown in Fig[2] Fortunately, flat
zone approaches can tackle this problem [31].

A flat zone is a connected (in 8-connectivity) region where the gray-level is constant [32]. Flat
zone filtering consists in removing all the flat zones that do not fulfill a given criterion. In this paper,
the objective is to remove all the structures that are “too small” to be significant in a morphological
meaning, e.g. the road is usually a class of interest but not the cars that might be on the road.
The chosen criterion is the area of the flat zone, which is simply the number of pixels belonging to
the flat zone.

Soille has proposed a flat zone filter ¥§"** based on an area criterion A which has the following

properties [22]:

e Absorption: The composition of two transformations v of different sizes A and v always give
the result of the transformation with the biggest size parameter;

o Self complementarity: 1 is self-complementary with respect to the complementation operator

C <= yv=vyC.
The use of this area filter was motivated by the following peculiarities:

e The self complementarity guarantees that each structure is processed in the same way, what-
ever its gray value or its local contrast. Thus it analyzes all the structures of an image at
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Figure 2: (a) Original image, (b) ASF based on area opening/closing, (c) flat zones area filtering and (d) the
neighborhood system. For both filters A was set to 10. Note that with ASF, many structures are of an area smaller
than . Using ¢{"°%, the number of flat zones significantly decreases, from 1995 flat zones in (a) to 127 in (c), against
1242 in (b). In (d) each color represents a set of neighbor pixels.

once, local extrema (be they minima or mazima) as well as regions with intermediate grey
levels. Classic approaches by others workers usually have only the self dual property (e.g.

FLST [33]).

e The algorithm can be implemented using priority queue structures and leads to very fast
processing [34]. It is performed iteratively, increasing the area parameter at each step until
the desired value is reached.

By using this area filter, it is possible to simplify the image by removing all structures smaller
than the parameter A. It is clear that small structures may be of interest and they can be accidentally
removed when filtering. But, according to the spatial resolution of the data and the classes, it is
possible to filter so as to keep only relevant structures in the image, where structures are represented
as flat zones. An example of such filtering is shown in Figure [2}

2.3. Morphological Neighborhood

As stated in the introduction, the neighborhood of each pixel is defined as the connected set
of pixels resulting from the application of a self-complementary area filter. This is illustrated in
Figure [{| where (b) is the area filtering of (a). The filtered image is partitioned into flat zones. Each
flat zone is consistent and hence belongs to one single structure in the original image. Furthermore,
the smallest structures have been removed and only the main structures of interest remain. The
morphological neighborhood 5 of pixel x is defined as the set of pixels that belong to the same
flat zone in the filtered image. The neighborhoods defined in this way are applied to the original
image. Figure(c) shows the morphological neighborhood €2y associated with the observed pixel x.



This neighborhood is obviously more homogeneous and spectrally consistent than the fixed square
featured on Figure [d] (a).

Formally, the above defined morphological neighborhood is connected to the more general con-
cept of adaptive neighborhood in image processing [35, B6, B7, 38]. Filters based on adaptive
neighborhoods are called adaptive operators: The effect of these operators is dependent of the loca-
tion and of the neighborhood of the considered pixel. Such operators can be divided into two main
classes: Adaptive-weighted operators and spatially-adaptive operators [35]. Morphological neigh-
borhood belongs to the second class, the neighborhood is built adaptively for each pixel through
local area and local contrast criteria. Considering another approach for defining the neighborhood
adaptively, the morphological neighborhood has several interesting properties: There is no stopping
criterion and there is only one parameter, the area parameter, which can be tuned using an intu-
itive interpretation (e.g., the objects of interest must contain more than a certain amount of pixels).
However, in this article we only consider crisp neighborhood: Two pixels are either neighbors or
not. A more advanced approach would be to consider that two pixels are “more or less” neighbors.
Such information could be included in the extraction of the spatial feature. But it goes beyond the
scope of this paper.

2.4. Multichannel images

The area filter cannot be used directly on multispectral or hyperspectral remote sensing images,
because of the lack of ordering relation. In order to overcome this shortcoming, several approaches
can be considered, see [39] for a review of several multivariate morphological filters. Using marginal
ordering, one can apply the area filter on each band independently, but considering the high inter-
band correlation, this is not appropriate [40, [41]. Moreover, pixel-vectors not present in the original
image can be created using marginal ordering.

Total pre-ordering was exploited in previous work. This strategy was successfully used in [42],
where the Principal Component Analysis (PCA) [4] is applied to map the images onto a vector
space where an actual ordering relation exists. It enables the computation of the MP on multivalued
images, leading to the construction of the Extended MP (EMP) [42] [43]. Note that this EMP is
somewhat different to the EMP defined in [44].

In this paper, the area filtering is computed on the first principal component to extract the
neighborhood of each pixel. Then, the neighbors mask is applied on each band of the data. The
diagram below sums up the methodology:

X X

(x,v1)

T — ), ——> P — Oy

where vy is the first eigenvector corresponding to the largest eigenvalue of the covariance matrix
of x and @ means that the one-dimensional morphological neighborhood mask is applied on each
spectral band of the data. The following section details how spatial information is extracted.

2.5. Egxtracting Spatial Features

Once the neighborhood of each pixel has been adaptively defined, spatial information is ex-
tracted. Considering the small average size of the neighbors set, a description using higher order
statistics would not be reliable. Shape descriptors are not appropriate either, as one given structure
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Figure 3: Original data and median filtering output (A = 15): (a) band 50, (b) band 100, (c) and (d) filtered version
of (a) and (b).

might be split into several consistent regions (see Figure [4] (b): The roof is divided into several tri-
angles). As an alternative, the vector median value of the neighbors set €2 is computed, for every

pixel x [45]:
Ty = med(€y) (1)

where dim(x) = dim(Yx) = n, the number of spectral bands. Unlike the mean vector, the median
vector is a vector from the initial set, which ensures a certain spectral consistency.

In order to speed up the kernel computation, the median filter can be applied in the pre-
processing step, just after the area filtering. Then the inputs to the SVM classifier are the original
data and the area+median filtered data. Figure [3] shows the results of such pre-processing on
hyperspectral data.

In conclusion, every pixel now has two features: The spectral feature x, which is the original
value of each pixel, and the spatial feature Yy, which is the median value computed on each pixel’s
adaptive neighborhood. The easiest way to use both pieces of information would be to build a
stacked vector, but it would not allow to weight the different features. In this paper, the kernel
trick [13] of the SVM is exploited to design a composite kernel that makes it possible to set the
relative influence of the extracted features. This is detailed in the next section.

3. Contextual Spatial-Spectral Support Vectors Machines

This section is dedicated to the definition of a contextual spatial-spectral SVM-based classifier.
The classical setting is used to learn the SVM in the dual formulation [I3]. Multiclass One vs
All approach is chosen in this article, which consists in training an ensemble of classifiers, each



discriminating one class from all the others. The final decision is taken according to the classifier that
provides the greatest distance from the hyperplane. This choice was motivated by the possibility
of analyzing the results for each class separately, to investigate whether the neighborhood system
defined above is well suited or not.

To apply SVM, one has to define a kernel functiorﬂ between samples. For n-valued pixels:

E:R"xR" - R. (2)

One classical effective kernel is the Gaussian radial basis kernel:

o (x,2) = exp (_“X‘”) (3)

202

where the norm is the Euclidean-norm and ¢ € RT tunes the variance of the Gaussian kernel. A
short comparison of kernels for remotely sensed image classification can be found in [46].

For the classification of remote sensing images, X represents a pixel-vector where each component
contains specific spectral information provided by a particular channel [47]. In this way a pixel-based
classifier is defined. As explained in the introduction, the drawback is that inter-pixel dependency
is not used.

Thanks to kernel properties, it is possible to define kernels that use both spectral and spatial
information without running into intractable computational problems. Rules for kernel construction
can be found in [48]. The linearity property is used to construct the new kernel: If k; and ko are
kernels, and 1, o > 0, then prks + poks is a kernel.

Using the previous property, the spatial-spectral kernel K is defined as:

Koy : RP xR —

[0, 1]
(x,2) — (1
0

- M)kipat (X7 Z) + Mk;pect (X7 Z) (4)
<p<l,0<o

From our experiments [46], the spectral kernel is defined as in :

kgpeet : R* xR™ = [0,1]

202

_le—z||2> (5)

(x,2) +— eXp(

The spatial kernel is defined as follows:

kspat : R™ xR — [0, 1]

o) o exp (102 Tz|2> (6)

202

where Ty is the spatial information extracted in Section see eq.. Kernel (@ can be constructed
by the composition of two functions: k$P** = k, o T (where o is a composition operator). The
parameter o is the same for both the spatial and the spectral kernel, the reason being the range of
the data: Since the spatial features are extracted using median filtering from the spectral features,
they have the same range. It is therefore appropriate to use the same parameter value.

IFor convenience, in the following we refer to kernel instead of kernel function.



The weight p controls the relative proportion of spatial and spectral information in the final
kernel. For instance, for the class “Grass”, the spectral information should be more discriminative
while it should be the spatial information for the class “Building”. This parameter is set during the
training process, as the parameter ¢. Finally, the new decision rule is:

l
f(Z) = Z yiailca,/_t (Xia Z) + b. (7)
=1

For pixels belonging to the same set, the spatial information is the same. It is expected to
achieve more homogeneous labeled zones in the final classification. This point is assessed in the
next section.

4. Experimental Results

4.1. Data Sets

Three real data sets detailed below were used in the experiments. These data sets were selected
for the following reasons:

1. All are very high spatial resolution images: This encourages the use of spatial information
throughout the classification process.

2. Along with the high spatial resolution, two are hyperspectral data, i.e. with rich spectral
information, and one is panchromatic image, i.e. with low spectral information.

3. They correspond to different scenarios: One peri-urban area and two dense urban areas.

The differences in terms of spatial or spectral resolutions and in terms of spatial structures present
in the image cover a wide range of real cases. This allows to assess the robustness of the proposed
method and the validity of the derived conclusions.

4.1.1. Hyperspectral Image

Airborne data from the ROSIS-03 (Reflective Optics System Imaging Spectrometer) optical
sensor are used for the first two experiments. The flight over the city of Pavia, Italy, was operated
by the Deutschen Zentrum fiir Luft- und Raumfahrt (DLR, the German Aerospace Agency) within
the context of the HySens project, managed and sponsored by the European Union. According to
specifications, the ROSIS-03 sensor provides 115 bands with a spectral coverage ranging from 0.43
to 0.86um. The spatial resolution is 1.3 m per pixel. The two data sets are:

1. University Area: The first test set is around the Engineering School at the University of Pavia.
It is 610 x 340 pixels. Twelve channels have been removed due to noise. The remaining
103 spectral channels are processed. Nine classes of interest are considered: Tree, asphalt,
bitumen, gravel, metal sheet, shadow, bricks, meadow, and soil.

2. Pavia Center: The second test set is the center of Pavia. The image was originally 1096 x
1096 pixels. A 381 pixel wide black band in the left-hand part of image was removed, resulting
in a ‘two part’ image of 1096 x 715 pixels. Thirteen channels have been removed due to noise.
The remaining 102 spectral channels are processed. Nine classes of interest are considered:
Water, tree, meadow, brick, soil, asphalt, bitumen, tile, and shadow.

Available training and test sets for each data set are given in Tables [I] and [2} These are pixels
selected from the data by an expert, corresponding to predefined species/classes. Pixels from the
training set are excluded from the test set in each case and vice-versa.

10



Table 1: Information classes and training-test samples for the University Area data set.

Class [ Samples
No [ Name [ Train [ Test
1 Asphalt 548 6641
2 Meadow 540 18649
3 Gravel 392 2099
4 Tree 524 3064
5 Metal Sheet 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Brick 514 3682
9 Shadow 231 947

Total [ 3921 [ 42776

Table 2: Information classes and training-test samples for the Pavia Center data set.

Class [ Samples
No [ Name | Train [ Test
1 Water 824 65971
2 Tree 820 7598
3 Meadow 824 3090
4 Brick 808 2685
5 Bare Soil 820 6584
6 Asphalt 816 9248
7 Bitumen 808 7287
8 Tile 1260 42826
9 Shadow 476 2863

Total [ 7456 | 148152

4.1.2. Panchromatic Image

A panchromatic image is used in the third experiment. It comes from simulated PLEIADES
(satellite to be launched in 2011) images provided by CNES (the French space agency). The
image consists in 886x780 pixels. It has been acquired over the city of Toulouse, France. The
spatial resolution is 0.75 meter per pixel and only one spectral band is available. Four classes
were considered in each case, namely: Building, street, open area and shadow. See Table [3 for a
description of the classes of interest and of the training/test sets.

4.2. Experiments

Three parameters need to be tuned for the SVM: the penalty term C, the width of the Gaus-
sian kernel o and the weight p in K. From previous works, C' did not have a strong influence
on the classification results when set greater than 10. For all the experiments, it was set at
200. The other two parameters were set using five-fold cross validation, o € {0.5,1,2,4} and
w € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. The SVM algorithm was implemented with a modified
version of LIBSVM [49]. Each original data set was scaled between [—1, 1] using a per band range-
stretching algorithm. In all experiments, the Gaussian radial basis kernel was used as the original
kernel.

The proposed approach is compared to one state of the art approach, namely the Extended
Morphological Profile (EMP) [42]. The EMP is constructed using a few first principal components
of the multivalued images and by applying granulometries with geodesic filters. It has the limitations
described in Section [2} In all the experiments, both the EMP and raw data were classified using
the original SVM.

The classification accuracy was assessed with the overall accuracy (OA) which is the number
of accurately classified samples divided by the number of test samples, the average accuracy (AA)

11



Table 3: Information classes and training-test samples for the PLEIADES data set.

Class [ Samples
No [ Name [ Train [ Test
1 Road 780 2450
2 Shadow 798 2588
3 Building 845 2293
4 Open Area 1738 3886

Total [ 4161 [ 11217

(b)

Figure 4: Inter-pixel dependency estimation. (a) Original image and fixed square neighborhood. (b) Filtered image
and neighbor-set defined using area flat zones filter of size parameter A = 30 [22]. (c) Original image with the defined
neighbor-set Q.

which represents the average of class classification accuracy, the kappa coefficient of agreement
(k) which is the percentage of agreement corrected by the amount of agreement that could be
expected due to chance alone, and the class-specific accuracy. These criteria were used to compare
classification results and were computed using the confusion matrix. Furthermore, the statistical
significance of differences was computed using McNemar’s test, which is based upon the standardized
normal test statistic [50]:

_ fi2—[fa
7= vV iz + fa1 (8)

where f15 indicates the number of samples classified correctly by classifier 1 and wrongly by classifier
2. The difference in accuracy between classifier 1 and 2 is said to be statistically significant if
|Z] > 1.96. The sign of Z indicates whether classifier 1 is more accurate than classifier 2 (Z > 0)
or vice-versa (Z < 0).

4.2.1. ROSIS University Area

Comparison with the original SVM. For this experiment, we first investigated the influence of the
parameter A on the definition of the neighborhood set. Several values for A were tried, ranging
from 2 to 40. Results of the classification are given in Table [ Regarding the variation in the
classification results, it seems that the parameter A has a variable influence on the classification
accuracies for each class. To explain this, three situations can be identified:

1. The spectral information is sufficient to discriminate the pixel, and this spectral information
is not noisy, so no additional information is needed (classes 9 and 5).
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Table 4: Classification accuracies for University Area data set. The best results for each class are reported in bold
face. A is the difference between the best K* and the original kernel. * means that classification was performed
using the proposed kernel and area filtering of size .

Class [ svM [ EMP [[ K7 K° Ko K K20 K2 K30 K35 K 1T A

T. Asphalt 80.64 | 93.33 || 80.41 80.08 82.30 83.25 84.57 86.32 84.36  84.57  86.13 5.68
2. Meadow 68.47 | 73.40 72.28 7227  75.17 72.28 76.38 76.32 78.52 75.18  75.16 | 10.05
3. Gravel 73.80 | 52.45 76.51 77.13 81.71 87.04 90.61 89.71 84.80 85.52  85.90 | 16.81
4. Tree 97.49 | 99.31 96.44 96.64  94.19 94.94 95.07 94.61 96.87  94.84  97.65 0.16
5. Metal Sheet || 99.49 | 99.48 99.11 99.26  99.41 96.51  99.48 98.29 99.88  99.63  99.63 0.39
6. Bare Soil 94.83 | 61.90 95.29 94.33  97.26  95.67 96.88  94.09 95.61 98.31 97.87 | 3.48
7. Bitumen 91.50 | 97.67 93.38 9451 89.70 91.50 94.14 93.91 95.56  96.17  93.83 4.67
8. Brick 91.88 | 95.17 92.07 92.67 96.14 94.46 94.70 95.84 95.44  95.30  95.79 4.26
9. Shadow 97.04 92.29 95.04 94.83 95.56 92.29 93.56 93.24 97.78 96.73 97.25 0.74
OA [[ 80.13 | 79.83 || 81.89 81.85 84.04 8279 85.33 _ 85.22 86.11 8490  85.28 | 5.8

AA [[ 8833 | 85.00 || 88.95 89.09 90.17 _89.77 9171 01.37 901.908 01.80 92.14 | 3.81

% [[ 75.19 | 74.15 || 77.27 7723 79.86 _ 78.36__ 81.45 _81.20 82.35 _ 80.93 _ 81.42 | 7.16

2. The size of the structure to which the sample belongs is:

e large; when area filtering is performed, the sample is directly merged into a structure
of a size larger than A. This leads to a better discrimination of the concerned classes
(classes 1, 7, and 8).

e small; when area filtering is performed, the pixel may be merged into another structure.
For example, when considering the class “Tree”, this may be merged with class “Meadow”.
This leads to poorer discrimination of the concerned classes (class 4).

3. The class is highly textured and area filtering smoothes the structure. This leads to a better
discrimination of the concerned classes (classes 2, 3, and 6).

According to the results in Table [ the proposed approach outperforms the original SVM in
terms of classification accuracies. The statistical significance of the differences in classification
accuracy between the proposed approach and the original SVM are reported in Table Kernel
parameters found after the training step are given in Table[6] The value of ;1 confirms that a spatial
kernel is useful for discrimination, since small values of p are selected during the training process
(corresponding to the inclusion of more spatial information than spectral information). It is worth
noting that too high a value of A\ does not help classification. It makes area filtering too strong,
thereby removing too many relevant structures.

From this first experiment, it emerges that adding neighbors for the classification improved the
final results for some classes but not for all. Regarding the nature of the classes, the optimum
neighborhood system and the ratio between spatial and spectral information seem to be different
for each class and need to be tuned during the training process.

Figure [5| shows a false color of the original image and the classification maps obtained using the
original kernels and the proposed kernel.

Comparison with the Extended Morphological Profile [{2]. Principal component analysis was ap-
plied to the data. The first three components were retained and morphological processing was
applied. For each component, 4 opening/closings with a disk as structuring element, with initial
radius of 2 and an increment of 2 were computed. Thus the EMP was a vector with 27 components.
The parameters were fitted in the same manner as the classic kernel in the previous experiment.
Classification results for the EMP are listed in Table[d The obtained difference statistic between
our proposed approach and the EMP is Z = 27.69 with the best results obtained with A = 30.
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Table 5: Standardized Normal Test Statistic (Z) which Reflects the Significance of Differences in Classification
Between Different Kernels for the University Area Data Set.

‘ ‘ SVM ’CUZ )CUE) ’CIU ,le) ,Czo ,sz) ,CJU ,Cdf)

Ko? 10.26
Ko 10.14
Ko 22.66
K 15.29
K20 28.97
K20 29.98
K30 33.30
K38 27.33
K40 || 29.38

Table 6: Kernel parameters found by 5-fold cross validation for University data set (A = 30).

Class [ 1 2 3 4 5 6 7 8 9
°w 0.3 0.1 01 01 09 05 01 02 04
o 0.5 1 0.5 0.5 1 1 1 0.5 4

From the table, the proposed approach performs better than the EMP in terms of classification
accuracy. However, for the “Asphalt”, “Tree” and “Bitumen” classes the EMP produces better
classification. The “Asphalt” class corresponds to the roads in the image, which are typically thin,
linear structures. Examining the thematic map Figure [5](c), the roads seem to be better identified
and more continuous than in Figure (d) The morphological profile extracts information about
the shape and size of a structure, while the median value of the adaptive neighborhood is more
an indication of the gray-level distribution of a structure, hence it is not surprising that the MP
classification performs best for that class. Note that both spatial-spectral approaches perform better
for that class than the use of spectral information alone. For the “Tree” class, the interpretation is
difficult. Two effects are to be considered: First, isolated trees are removed with the area filter thus
making the proposed approach less efficient. Second, grouped trees are better classified with the
proposed approach due to the smoothing effect. One effect can be more dominant than the other
one, depending on the image.

In terms of classes with no typical shape such as meadow, gravel, or bare soil, the proposed
approach outperforms the EMP in terms of classification accuracy. The adaptive neighborhood fits
such “structures” better, and the value extracted from these “structures” helps in the discrimination
(due to the smoothing effect described above).

In the next experiment, an image of a dense urban area is classified. According to the previous
considerations mentioned above, the EMP ought to be the best in terms of classification accuracies
at dealing with this type of data.

4.2.2. ROSIS Pavia Center

Comparison with the original SVM. For the second data set, classification accuracies were already
very good. For convenience, only the best results have been reported (now A is selected by cross-
validation with the same range of variation as in the first experiment), compared with the original
results, see Table [} Following analysis of the parameter ), it can be seen that classes 1, 2, 8,
and 9 are separable using only the spectral information and adding spatial information does not
help significantly in discrimination. Structures belonging to class 4 are merged together during the
area filtering, and this leads to better discrimination. Textured classes (3, 5, and 7) are also better
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Figure 5: (a) False color original image of University Area. (b) Classification map using the RBF kernel. (c)
Classification map using the EMP. (d) Classification map using the proposed kernel where A = 30.

Table 7: Classification accuracies for Pavia Center data set for the standard SVM, the EMP and the proposed
approach.

[[ OA AA A [ 1. Water 2. Tree 3. Meadow 4. Brick 5. Bare Soil 6. Asphalt 7. Bitumen 8. Tile 9. Shadow
SVM 98.06 95.76 97.25 99.08 90.81 97.44 87.49 94.56 96.43 96.54 99.48 100
120 98.43 97.13 97.79 99.15 90.04 98.12 94.00 99.45 95.82 98.15 99.47 99.93
EMP 98.95 97.72 98.51 99.82 90.94 95.50 99.07 99.06 97.99 97.49 99.62 99.97

separated. However, in this image, class 6 corresponds to narrow streets, and the area filtering
impairs classification of this type of structure. Nevertheless, in the final analysis OA, AA and x are
improved with the proposed kernel, and the results are statistically different, with Z = 8.82.

Figure [6] presents the false color original image and classification maps using the original kernels
and the proposed kernel.

Comparison with the EMP. The EMP was constructed following the same scheme as before. It
comprised 27 features, and classification was performed using an SVM with a Gaussian kernel.
Classification accuracies are reported in Table [7] The statistical difference is Z = —15.81, which
means that the EMP performs better in this case. In terms of the global accuracy from the table,
the EMP gave a slightly better result.

Regarding the class-specific accuracies, the same conclusions can be drawn as in the previous
experiments. The class “Asphalt” is better classified using the EMP than with the proposed ap-
proach, while the class “Meadow” is better discriminated using the adaptive neighborhood. This
confirms our previous conclusion. The class “Tile” was already accurately classified using spectral
information, hence no significant difference is found between EMP and the proposed approach,
though this class corresponds to most of the roofs in the image.

Figure [6] shows the thematic map obtained using the conventional SVM, the EMP and the
proposed approach.
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Figure 6: (a) False color original image of Pavia Center. (b) Classification map using the RBF kernel. (c) Classifi-
cation map using the EMP. (d) Classification map using the proposed kernel where A = 20.

Table 8: Parameter p found by cross-validation for PLEIADES Image
Class [[ 1 [ 2 [ 3 [ 4
n ][ 03] 06 ]01]04

4.2.8. PLEIADES Image

Classification accuracies for the PLEIADES Image are reported in Table [9] as for the previous
experiment only the best results have been reported. The range of A value was [2,60]. The
best CV result was obtained with A = 45. The original image and the classification map using
the original and the proposed kernel are shown in Figure [7] Classification accuracies have been
significantly improved for each class.

Comparison with the original SVM. Classification accuracies are reported in Table 0] In terms of
the three global classification accuracy estimates (OA, AA, and k), the proposed approach led to an
improvement in classification: The simultaneous use of spatial and spectral information invariably
leads to better discrimination of the different classes.

In Table [§] the values of u for each binary sub-problem are reported. The spatial information
is given a heavier weight than the spectral information. This tends to prove that the proportion of
each kind of information needs to be carefully tuned during the training process and should not be
set to the same value for all classes.

Figure [7]shows the original image and the thematic maps obtained using the original kernel and
the proposed kernel.

Comparison with the MP. Since the data are from a panchromatic image, the MP was used instead
of the EMP (only one spectral band). It comprised 31 features, 15 geodesic openings/closings,
the structuring element being a disk of size 2, 4...30. The MP leads to an improvement of the
classification in terms of accuracy, but to a lesser extent than with the spatial-spectral SVM. From
Figure[7] the thematic map produced with the MP features is less detailed than the thematic map
produced with the proposed method.
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Table 9: Classification accuracies for PLETADES data set. Z = 18.40

[ OA AA 23 [ 1. Road 2. Building 3. Shadow 4. Open Area
SVM 76.99 75.53 68.33 70.69 86.09 60.97 84.35
K 82.25 80.91 75.80 77.31 93.86 64.15 88.32
MP 80.58 78.55 73.14 82.42 48.03 85.52 98.15

(b) (e) (d)

Figure 7: (a) False color original image of Toulouse, (b) Classification map using the RBF kernel, (c) Classification
map using the MP, (d) Classification map using the proposed kernel where A = 45.

5. Discussion

5.1. General comments

Area Filtering. Used as a pre-processing step, this filter provides a simplified image where relevant
structures are still present and details are removed. However, too high a value for A may eliminate
small structures, such as trees in the University Area data experiment or narrow streets in the Pavia
Center data experiment. On the contrary, a too small value could make the method inefficient since
in that case the defined neighborhood is too small. Hence this parameter needs to be chosen
carefully. However, as it can be seen in Table [d] there is a range of value for which the algorithm
performs equally well.

In the proposed approach, the parameter \ was selected globally, i.e., all the classes share the
same value. But in terms of classification accuracies, see Table[d] it can be seen that the optimum
value of A is class-dependent. Hence in future work, the parameter A ought to be selected for each
class independently.

Multiband Extension. Since there is no ordering relation between vector-valued pixels, direct exten-
sion of the area filter is not possible. The proposed approach is extended to hyperspectral data by
considering the first principal component. This methodology has been successfully applied when us-
ing morphological filtering for the purpose of classification. In our experiments, the results confirm
the interest of using this scheme.

Spatial-Spectral Kernel. This formulation allows a compact definition of the classification algorithm.
Thus a few parameters (two) need to be tuned during the training stage. From these experiments,
the values of o does not seem to have a strong influence on the overall results (= 1-2%) when the
data are scaled between [—1,1]. The relative proportion of spatial and spectral information has a
stronger influence in the final classification.

A multi-resolution kernel can be defined using more than one spatial kernels: K, = pok*P°* +

Z?Zl wikPY with ZLO w; = 1 and p; > 0. For instance, the neighborhood can be defined at
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different scales. Recent optimization algorithms, such as SimpleMKL [51], can be used to select the
parameters p automatically.

Spatial-Spectral SVM vs. EMP + SVM. In experiments, both approaches lead to improved classi-
fication in terms of accuracy. The spatial-spectral approach performs better for peri-urban areas,
while the EMP leads to better results for very dense urban areas. However, the results are highly
correlated to the definition of the classes: When considering classes according to geometrical char-
acteristics (size or shape) the EMP performs better in terms of classification accuracies, but when
considering classes according to textural or spectral characteristics, the spatial-spectral approach
leads to better classification. Hence the method needs to be chosen in accordance with the data
and the classes of interest. Note that area filtering is less demanding in terms of computing time
than geodesic operators, especially for large images.

5.2. Computational complexity

Regarding the computational complexity, two main issues need to be considered, i.e., the area
filtering and the SVM classification. The area filtering represents at maximum 5% of the total
processing time and is consequently negligible. The longer part is the parameter selection for the
SVM (the cross validation). The computation of kernel is about twice more demanding than
the conventional Gaussian kernel. Still, it remains insignificant in comparison to running the SVM
optimization problem. The complexity of the SVM is o(n®) where n is the number of training
samples, which is the same whatever the method. Hence, once the kernel has been computed, the
conventional SVM and the proposed method have almost the same complexity (the proposed method
is slightly more demanding due to the kernel computation). However, there is one more parameter
that needs to be selected (u) for the proposed method, leading to a grid search by cross validation of
9 x 4 couples of values against only 4 for the conventional kernel (using the experimental settings).
Thus, even if the complexity of the algorithms is almost the same, the parameters selection makes
the proposed method take approximately 9 times longer than the conventional SVM method.

5.8. Comparison with other approach

Comparison with three others contextual methods for ROSIS-03 hyperspectral images are pro-
vided in this paragraph. The first method was proposed by S. Aksoy in [52]. He proposed to
extract relevant spatial/spectral features using both spectral and spatial image filters (PCA, LDA
and Gabor). Then a first supervised classification was performed using the extracted features and
clusters are constructed based on the classifier output and a spatial morphological segmentation.
The resulting features are characterized by spatial and spectral features and a supervised classifi-
cation was performed on the cluster.
The second method was proposed by Y. Tarabalka et al. in [53]. It is based on a SVM classification
followed by a Markov Random Field (MRF) regularization.
The third method was proposed by Huang and Zhang consist of a spatial multi-scale decomposition
of the image followed by a classification with SVM [54]. The multi-scale decomposition was based
on the mean-shift segmentation algorithm [55].

Overall accuracies are reported in Table [I0] All the four methods perform very well for ROSIS-
03 data sets. For the Pavia Center data set, the proposed method shows the best results in terms
of classification accuracy together with the multi-scale approach. For the University Area, it is the
SVM-MRF that performs the best and the second best result is provided by the proposed method.
These comparisons confirm empirically the ability of the proposed method to classify hyperspectral
images accurately.
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Table 10: Classification accuracy of various methods on the ROSIS-03 data. Best results for each data sets are
reported in boldface.

[ OA [[ Region level Bayesian [52] | SVM-MRF [53] [ MS-SVM [54] [ Proposed method |
[ Pavia Center | 96,7 I 97,6 I 98,4 I 98,4 |
[ University Area || 84,5 [ 87,6 [ 82,7 [ 86,1 |

6. Conclusion

The classification of remotely sensed images from urban areas using both spectral and spatial
information has been considered. A key point is the definition of the spatial neighborhood and
spatial information. In this article, the median value was used as a characterization of the inter-
pixel dependency within a structure. Experiments have yielded good results in terms of classification
accuracy. Defining a weighted kernel allows it to be applied with low computational complexity.

Comparisons were made between the proposed approach, the EMP and the original SVM. The
proposed approach appears to perform better when the image area is not a dense urban area
(University Area), while the EMP performs better for dense urban areas (Pavia Center). This is
due to the morphological processing, which extracts geometrical information about the structure,
while the proposed approach extracts only information about its gray-level distribution. However,
in all cases, the proposed method outperforms the original SVM classifier.

One extension lies in the definition of the spatial information used. The median value does
not provide information about the shape, size, or homogeneity of the neighborhood set. Other
parameters could be extracted such as textural information, thus leading to another definition of
the spatial kernel. In [56], a method for the estimation of the characteristic scale at each pixel was
proposed. Such type of information needs also to be included in the classification process.

In future research, a connected filter should be defined and its influence on the definition of
neighboring pixels has to be investigated. Multichannel area filters could also be addressed [57].
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