Parsimonious Gaussian process models for the spectral-spatial classification of hyperspectral remote sensing images Seminar MIAT

M. Fauvel ¹, C. Bouveyron ² and S. Girard ³

¹ UMR 1201 DYNAFOR INRA & Institut National Polytechnique de Toulouse
 ² Laboratoire MAP5, UMR CNRS 8145, Université Paris Descartes & Sorbonne Paris Cité
 ³ Equipe MISTIS, INRIA Grenoble Rhône-Alpes & LJK

Outline

Introduction

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

Introduction

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

Introduction			
0000			
Remote			

Remote Sensing

Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

 Parsimonious Gaussian process models

Experimentals results 000000 Conclusions and perspectives

Nature of remote sensing images

A remote sensing image is a sampling of a spatial, spectral and temporel process

0000000000

Nature of remote sensing images

A remote sensing image is a sampling of a spatial, spectral and temporel process

 Parsimonious Gaussian process mode

Experimentals results 000000

Conclusions and perspectives

Nature of remote sensing images

A remote sensing image is a sampling of a spatial, spectral and temporel process

O●000000000 Remote Sensing

Introduction

arsimonious Gaussian process models

Experimentals results 000000

ntroduction		
000000000000000000000000000000000000000		
	gery	

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

000000000000

Introduction

Hyperspectral Imagery 1/3

- Pixels are represented by random vector $\mathbf{x} \in \mathbb{R}^d$ with d large, associated to a random variable x that represents the class/label.
- Classification: predict the membership y of \mathbf{x} , $y = f(\mathbf{x})$.

Introduction				
000000000				
Classification of hyperspectral imagery				

Hyperspectral Imagery 2/3

Instrument	Range (nm)	# Bands	Bandwidth (nm)	Spatial resolution (m)
AVIRIS	400-2500	224	10	20/1-4
HYDICE	400-2500	210	10	1-4
ROSIS-03	400-900	115	4	1
Hyspec	400-2500	427	3	1
HyMAP	400-2500	126	10-20	5
CASI	380-1050	288	2.4	1-2
HYPERION	400-2500	200	10	30

Introduction		
000000000		
Classification of hyperspectr		

Hyperspectral Imagery 3/3

Definition of more classes with finer resolution:

Parsimonious Gaussian process model
0000000000000

Experimentals results 000000 Conclusions and perspectives

Classification of hyperspectral ima

Image classification in high dimensional space

- High number of measurements but limited number of training samples.
- Curse of dimensionality: Statistical, geometrical and computational issues. Conventional method failed [Jimenez and Landgrebe, 1998].
- Kernel methods have shown great potential in many situations.
- Pixelwise classification not adapted [Fauvel et al., 2013].

Need to incorporate spatial information in the classification process: additional complexity.

Introduction		
000000000000		

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

ntroduction		
000000000000000000000000000000000000000		
opatial-spectral classification		

Kernel methods VS Parametric methods

- 1. Kernel methods [Camps-Valls and Bruzzone, 2009]:
 - Good abilities for classification,
 - Spatial information included through kernel function or additional features.

$$k_s(\mathbf{x}_i, \mathbf{x}_j) = \sum_{\substack{m \sim i \\ n \sim j}} k(\mathbf{x}_m, \mathbf{x}_n)$$

- 2. Parametric methods [Solberg et al., 1996]:
 - Markov Random Field: able to model spatial relationship between pixels,
 - Problem of the estimation of the spectral energy term.
- 3. Parametric kernel methods: probabilistic models in the kernel feature space.
 - Allow to get probability membership, with robust classifier
 - Allow to use the MRF modelization

troduction		
0000000000		
patial-spectral classification		

Kernel methods and MRF

- Maximum a posteriori: $\max_{Y}(Y|\mathbf{X})$
- When Y is MRF: $P(Y|\mathbf{X}) \propto \exp(-U(Y|\mathbf{X}))$ where $U(Y|\mathbf{X}) = \sum_{i=1}^{n} U(y_i|\mathbf{x}_i, \mathcal{N}_i)$ with

$$U(y_i|\mathbf{x}_i, \mathcal{N}_i) = \Omega(\mathbf{x}_i, y_i) + \rho \frac{\mathcal{E}(y_i, \mathcal{N}_i)}{\mathcal{E}(y_i, \mathcal{N}_i)}$$

• Spectral term: $-\log[p(\mathbf{x}_i|y_i)] \longleftarrow$

- SVM outputs [Farag et al., 2005, Tarabalka et al., 20/10, Moser and Serpico, 2013]
- Kernel-probabilistic model [Dundar and Landgrebe, 2004]

■ Spatial term ←

▶ Potts model: $\mathcal{E}(y_i, \mathcal{N}_i) = \sum_{j \in \mathcal{N}_i} [1 - \delta(y_i, y_j)]$

y_1	y_2	y_3
y_4	y_i	y_5
y_6	y_7	y_8

(Kernel) Gaussian mixture models

Quadratic decision rule in the input space

$$D_c(\mathbf{x}_i) = (\mathbf{x}_i - \boldsymbol{\mu}_c)^\top \boldsymbol{\Sigma}_c^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_c) + \log(\det(\boldsymbol{\Sigma}_c)) - 2\ln(\pi_c)$$

Quadratic decision rule in the feature space [Dundar and Landgrebe, 2004]:

$$D_c(\phi(\mathbf{x}_i)) = \bar{\phi}_c(\mathbf{x}_i)^\top \mathbf{K}_c^{-1} \bar{\phi}_c(\mathbf{x}_i) + \log(\det(\mathbf{K}_c)) - 2\ln(\pi_c)$$

- Problem: K is badly conditioned (and non-invertible).
- Unlike SVM, there is no regularization for \mathbf{K}_c^{-1} and $\log(\det(\mathbf{K}_c))$ in the estimation process.
- So it needs to be included in the model.

(Kernel) Gaussian mixture models

Quadratic decision rule in the input space

$$D_c(\mathbf{x}_i) = (\mathbf{x}_i - \boldsymbol{\mu}_c)^\top \boldsymbol{\Sigma}_c^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_c) + \log(\det(\boldsymbol{\Sigma}_c)) - 2\ln(\pi_c)$$

Quadratic decision rule in the feature space [Dundar and Landgrebe, 2004]:

$$D_c \left(\phi(\mathbf{x}_i)
ight) = ar{\phi}_c(\mathbf{x}_i)^\top \mathbf{K}_c^{-1} ar{\phi}_c(\mathbf{x}_i) + \log(\det(\mathbf{K}_c)) - 2\ln(\pi_c)$$

- Problem: **K** is badly conditioned (and non-invertible).
- Unlike SVM, there is no regularization for \mathbf{K}_c^{-1} and $\log(\det(\mathbf{K}_c))$ in the estimation process.
- So it needs to be included in the model.

Enforce parsimony in the model

Introduction

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

Parsimonious Gaussian process models

Experimentals results

Conclusions and perspectives

Gaussian process in the feature so

Introduction

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space

Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

	Parsimonious Gaussian process models	
	000000000000000000000000000000000000000	
Gaussian process in the fea	ture space	

Kernel induced feature space

- Gaussian kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \|\mathbf{x}_i \mathbf{x}_j\|_{\mathbb{R}^d}^2\right)$
- From Mercer theorem: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{F}}$ which can be written

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{m=1}^{d_F} \lambda_m \mathbf{q}_m(\mathbf{x}_i) \mathbf{q}_m(\mathbf{x}_j)$$

where $d_{\mathcal{F}} = \dim(\mathcal{F})$.

$$\phi: \mathbf{x} \mapsto [\dots, \sqrt{\lambda_m} \mathbf{q}_m(\mathbf{x}), \dots], \ m = 1, 2, \dots, d_{\mathcal{F}}$$

 \blacksquare For the Gaussian kernel, $d_{\mathcal{F}}=+\infty$

Parsimonious Gaussian process models	
000000000000	

Gaussian process

- Let us assume that $\phi(\mathbf{x})$, conditionally on y = c, is a Gaussian process with mean μ_c and covariance function Σ_c .
- The projection of $\phi(\mathbf{x})$ on the eigenfunction \mathbf{q}_{cj} is noted $\phi(\mathbf{x})_j$:

$$\langle \phi(\mathbf{x}), \mathbf{q}_{cj} \rangle = \int_J \phi(\mathbf{x})(t) \mathbf{q}_{cj}(t) dt.$$

- The random vector $[\phi(\mathbf{x})_1, \ldots, \phi(\mathbf{x})_r] \in \mathbb{R}^r$ is, conditionally on y = c, a multivariate normal vector.
- Gaussian mixture model (Quadratic Discriminant) decision rules:

$$D_c(\phi(\mathbf{x}_i)) = \sum_{j=1}^r \left[\frac{\langle \phi(\mathbf{x}_i) - \boldsymbol{\mu}_c, \mathbf{q}_{cj} \rangle^2}{\lambda_{cj}} + \ln(\lambda_{cj}) \right] - 2\ln(\pi_c)$$

	Parsimonious Gaussian process models		
	000000000000		

Gaussian process

- Let us assume that $\phi(\mathbf{x})$, conditionally on y = c, is a Gaussian process with mean μ_c and covariance function Σ_c .
- The projection of $\phi(\mathbf{x})$ on the eigenfunction \mathbf{q}_{cj} is noted $\phi(\mathbf{x})_j$:

$$\langle \phi(\mathbf{x}), \mathbf{q}_{cj} \rangle = \int_J \phi(\mathbf{x})(t) \mathbf{q}_{cj}(t) dt.$$

- The random vector $[\phi(\mathbf{x})_1, \ldots, \phi(\mathbf{x})_r] \in \mathbb{R}^r$ is, conditionally on y = c, a multivariate normal vector.
- Gaussian mixture model (Quadratic Discriminant) decision rules: $r_c = \min(n_c, r)$

$$D_{c}(\phi(\mathbf{x}_{i})) = \sum_{j=1}^{r_{c}} \left[\frac{\langle \phi(\mathbf{x}_{i}) - \boldsymbol{\mu}_{c}, \mathbf{q}_{cj} \rangle^{2}}{\lambda_{cj}} + \ln(\lambda_{cj}) \right] - 2\ln(\pi_{c}) \\ + \sum_{j=r_{c}+1}^{r} \left[\frac{\langle \phi(\mathbf{x}_{i}) - \boldsymbol{\mu}_{c}, \mathbf{q}_{cj} \rangle^{2}}{\lambda_{cj}} + \ln(\lambda_{cj}) \right]$$

Parsimonious Gaussian process models	
000 0000 000000	

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

Parsimonious Gaussian process models	
00000000000	

Definitions

Definition (Parsimonious Gaussian process with common noise)

 $p\mathcal{GP}$ is a Gaussian process $\phi(\mathbf{x})$ for which, conditionally to y = c, the eigen-decomposition of its covariance operator Σ_c is such that

A1. It exists a dimension $r < +\infty$ such that $\lambda_{cj} = 0$ for $j \ge r$ and for all $c = 1, \dots, C$.

A2. It exists a dimension $p_c < \min(r, n_c)$ such that $\lambda_{cj} = \lambda$ for $p_c < j < r$ and for all $c = 1, \ldots, C$.

Definition (Parsimonious Gaussian process with class specific noise)

- A3. It exists a dimension $r_c < r$ such that $\lambda_{cj} = 0$ for all $j > r_c$ and for all $c = 1, \ldots, C$. When $r = +\infty$, it is assumed that $r_c = n_c 1$.
- A4. It exists a dimension $p_c < r_c$ such that $\lambda_{cj} = \lambda_c$ for $j > p_c$ and $j \le r_c$, and for all $c = 1, \ldots, C$.
 - A1 and A3 are motivated by the quick decay of the eigenvalues of Gaussian kernels.

• A2 and A4 express that the data of each class lives in a specific subspace of size p_c .

M. Fauvel, DYNAFOR - INRA

$p\mathcal{GP}$ models: List of sub-models

Model	Variance inside \mathcal{F}_c	\mathbf{q}_{cj}	p_c
	Variance outside \mathcal{F}_c : Common		
$p{\cal GP}_0$	Free	Free	Free
$p \mathcal{GP}_1$	Free	Free	Common
$p{\cal GP}_2$	Common within groups	Free	Free
$p{\cal GP}_3$	Common within groups	Free	Common
$p{\cal GP}_4$	Common between groups	Free	Common
$p{\cal GP}_5$	Common within and between groups	Free	Free
$p{\cal GP}_6$	Common within and between groups	Free	Common
	Variance outside \mathcal{F}_c : Free		
$np {\cal GP}_0$	Free	Free	Free
$np \mathcal{GP}_1$	Free	Free	Common
$np {\cal GP}_2$	Common within groups	Free	Free
$np {\cal GP}_3$	Common within groups	Free	Common
$np {\cal GP}_4$	Common between groups	Free	Common

Parsimonious Gaussian process models	
000 00000 000000	

Figure: Visual illustration of model $np\mathcal{GP}_1$. Dimension of \mathcal{F}_c is common to both classes, they have specific variance inside \mathcal{F}_c and they have specific noise level.

	Parsimonious Gaussian process models	
	000 000 000000	
Parsimonious Gaussian process		

Decision rules for $p\mathcal{GP}_0$

Proposition

For $p\mathcal{GP}_0$, the decision rule can be written:

$$D_{c}(\phi(\mathbf{x}_{i})) = \sum_{j=1}^{p_{c}} \frac{\lambda - \lambda_{cj}}{\lambda_{cj}\lambda} \langle \phi(\mathbf{x}_{i}) - \boldsymbol{\mu}_{c}, \mathbf{q}_{cj} \rangle^{2} - 2\ln(\pi_{c}) + \frac{\|\phi(\mathbf{x}) - \boldsymbol{\mu}_{c}\|^{2}}{\lambda} + \sum_{j=1}^{p_{c}} \ln(\lambda_{cj}) + (p_{M} - p_{c})\ln(\lambda) + \gamma$$

where γ is a constant term that does not depend on the index c of the class.

- Proofs are given in [Bouveyron et al., 2014].
- \blacksquare Decompose the sum: $\sum_{j=1}^{p_c}\lambda_{cj}+\sum_{j=p_c+1}^r\lambda$
- \blacksquare Use the property: $\sum_{j=1}^r \langle \phi(\mathbf{x}) \boldsymbol{\mu}_c, \mathbf{q}_{cj} \rangle^2 = \|\phi(\mathbf{x}) \boldsymbol{\mu}_c\|^2$

M. Fauvel, DYNAFOR - INRA

Parsimonious Gaussian process models

oduction Parsimonious

Parsimonious Gaussian process models

Experimentals results 000000

Conclusions and perspectives

Introduction

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process

Model inference

Link with existing models

Experimentals results

Data sets and protocol Results

Parsimonious Gaussian process models	
0000000000000	

Estimation of the parameters

• Centered Gaussian kernel function according to class *c*:

$$\bar{k}_{c}(\mathbf{x}_{i},\mathbf{x}_{j}) = k(\mathbf{x}_{i},\mathbf{x}_{j}) + \frac{1}{n_{c}^{2}} \sum_{\substack{l,l'=1\\y_{l},y_{l}'=c}}^{n_{c}} k(\mathbf{x}_{l},\mathbf{x}_{l'}) - \frac{1}{n_{c}} \sum_{\substack{l=1\\y_{l}=c}}^{n_{c}} \left(k(\mathbf{x}_{i},\mathbf{x}_{l}) + k(\mathbf{x}_{j},\mathbf{x}_{l})\right).$$

and
$$\overline{\mathbf{K}}_c$$
 of size $n_c \times n_c$: $(\overline{\mathbf{K}}_c)_{l,l'} = \frac{k_c(\mathbf{x}_l, \mathbf{x}_{l'})}{n_c}$.

• $\hat{\lambda}_{cj}$ is the j^{th} largest eigenvalue of $\overline{\mathbf{K}}_{c}$, and $\boldsymbol{\beta}_{cj}$ is its associated normalized eigenvector.

$$\hat{\lambda} = \frac{1}{\sum_{c=1}^{C} \hat{\pi}_c (r_c - \hat{p}_c)} \sum_{c=1}^{C} \hat{\pi} \left(\operatorname{trace}(\overline{\mathbf{K}}_c) - \sum_{j=1}^{\hat{p}_c} \hat{\lambda}_{cj} \right).$$

$$\hat{\pi}_c = n_c/n.$$

• \hat{p}_c : percentage of cumulative variance.

	Parsimonious Gaussian process models	
	00000000000000	
Model inference		

Computable decision rule

Proposition

The decision rule can be computed as:

$$D_c(\phi(\mathbf{x}_i)) = \frac{1}{n_c} \sum_{j=1}^{\hat{p}_c} \frac{\hat{\lambda} - \hat{\lambda}_{cj}}{\hat{\lambda}_{cj}^2 \hat{\lambda}} \left(\sum_{\substack{l=1\\y_l=c}}^{n_c} \beta_{cjl} \bar{k}_c(\mathbf{x}_i, \mathbf{x}_l) \right)^2 + \frac{\bar{k}_c(\mathbf{x}_i, \mathbf{x}_i)}{\hat{\lambda}} + \sum_{j=1}^{\hat{p}_c} \ln(\hat{\lambda}_{cj}) + (\hat{p}_M - \hat{p}_c) \ln(\hat{\lambda}) - 2 \ln(\hat{\pi}_c)$$

Proofs are given in [Bouveyron et al., 2014].

- Use of the property that the eigenfunction of the covariance function is a linear combination of $\phi({\bf x}_i)-{\pmb \mu}_c$

$$\langle \phi(\mathbf{x}_i) - \boldsymbol{\mu}_c, \phi(\mathbf{x}_j) - \boldsymbol{\mu}_c \rangle = \bar{k}_c(\mathbf{x}_i, \mathbf{x}_j)$$

	Parsimonious Gaussian process models	
	0000000 000 000	
Aodel inference		

Numerical considerations

- The proposed model allow a *safe* computation of \mathbf{K}_c^{-1} and $\log (\det(\mathbf{K}_c))$ that appears in the kernel quadratic decision rule.
- Only the p_c first eigenvector/eigenvalue are used
- Eigenvectors corresponding to small eigenvalues are not used
- If p_c s are not too large, $\log(\hat{\lambda})$ is stable.

	Parsimonious Gaussian process models	
	0000000 00 0000	
Andel inference		

Numerical considerations

- The proposed model allow a *safe* computation of \mathbf{K}_c^{-1} and $\log (\det(\mathbf{K}_c))$ that appears in the kernel quadratic decision rule.
- Only the p_c first eigenvector/eigenvalue are used
- Eigenvectors corresponding to small eigenvalues are not used
- If p_c s are not too large, $\log(\hat{\lambda})$ is stable.

Proof: \mathbf{K}_c is *pdf* so it can be decomposed into $\mathbf{Q}_c \mathbf{\Lambda}_c \mathbf{Q}_c^{\top} = \sum_{j=1}^r \lambda_{cj} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top}$

$$\begin{aligned} \mathbf{K}_{c}^{-1} &= \mathbf{Q}_{c} \mathbf{\Lambda}_{c}^{-1} \mathbf{Q}_{c}^{\top} = \sum_{j=1}^{r} \lambda_{cj}^{-1} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} = \sum_{j=1}^{p_{c}} \lambda_{cj}^{-1} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} + \lambda^{-1} \sum_{j=p_{c}+1}^{r} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} \\ &= \sum_{j=1}^{p_{c}} \lambda_{cj}^{-1} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} + \lambda^{-1} \left(\mathbf{I}_{n_{c}} - \sum_{j=1}^{p_{c}} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} \right) = \sum_{j=1}^{p_{c}} \frac{\lambda - \lambda_{cj}}{\lambda \lambda_{cj}} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top} + \lambda^{-1} \mathbf{I}_{n_{c}} \end{aligned}$$

	Parsimonious Gaussian process models	
	0000000 00 0000	
Andel inference		

Numerical considerations

- The proposed model allow a *safe* computation of \mathbf{K}_c^{-1} and $\log (\det(\mathbf{K}_c))$ that appears in the kernel quadratic decision rule.
- Only the p_c first eigenvector/eigenvalue are used
- Eigenvectors corresponding to small eigenvalues are not used
- If p_c s are not too large, $\log(\hat{\lambda})$ is stable.

Proof: \mathbf{K}_c is *pdf* so it can be decomposed into $\mathbf{Q}_c \mathbf{\Lambda}_c \mathbf{Q}_c^{\top} = \sum_{j=1}^r \lambda_{cj} \mathbf{q}_{cj} \mathbf{q}_{cj}^{\top}$

$$\mathbf{K}_{c}^{-1} = \mathbf{Q}_{c}\mathbf{\Lambda}_{c}^{-1}\mathbf{Q}_{c}^{\top} = \sum_{j=1}^{r} \lambda_{cj}^{-1}\mathbf{q}_{cj}\mathbf{q}_{cj}^{\top} = \sum_{j=1}^{p_{c}} \lambda_{cj}^{-1}\mathbf{q}_{cj}\mathbf{q}_{cj}^{\top} + \lambda^{-1}\sum_{j=p_{c}+1}^{r} \mathbf{q}_{cj}\mathbf{q}_{cj}^{\top}$$
$$= \sum_{j=1}^{p_{c}} \lambda_{cj}^{-1}\mathbf{q}_{cj}\mathbf{q}_{cj}^{\top} + \lambda^{-1}\left(\mathbf{I}_{n_{c}} - \sum_{j=1}^{p_{c}} \mathbf{q}_{cj}\mathbf{q}_{cj}^{\top}\right) = \sum_{j=1}^{p_{c}} \frac{\lambda - \lambda_{cj}}{\lambda\lambda_{cj}}\mathbf{q}_{cj}\mathbf{q}_{cj}^{\top} + \lambda^{-1}\mathbf{I}_{n_{c}}$$

$$\log\left(\det(\mathbf{K}_c)\right) = \sum_{j=1}^{p_c} \log(\lambda_{cj}) + (r - p_c) \log(\lambda)$$

	Parsimonious Gaussian process models	
	0000000000000	
nk with existing models		

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

Parsimonious Gaussian process models	
000000000000	

Existing models

- [Dundar and Landgrebe, 2004] Equal covariance matrix assumption and ridge regularization. Complexity: $\mathcal{O}(n^3)$. Similar to $p\mathcal{GP}_4$ with equal eigenvectors.
- [Pekalska and Haasdonk, 2009] Ridge regularization, per class. Complexity: $\mathcal{O}(n_c^3)$.
- [Xu et al., 2009] The last $n_c - p - 1$ eigenvalues are equal to λ_{cp} . Complexity: $\mathcal{O}(n_c^3)$. Similar to $p\mathcal{GP}_1$.

	Parsimonious Gaussian process models	
	0000000000000	
Link with existing models		

Existing models

- [Dundar and Landgrebe, 2004] Equal covariance matrix assumption and ridge regularization. Complexity: $\mathcal{O}(n^3)$. Similar to $p\mathcal{GP}_4$ with equal eigenvectors.
- [Pekalska and Haasdonk, 2009]
 Ridge regularization, per class. Complexity: O(n_c³).
- [Xu et al., 2009]

The last $n_c - p - 1$ eigenvalues are equal to λ_{cp} . Complexity: $\mathcal{O}(n_c^3)$. Similar to $p\mathcal{GP}_1$.

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results Data sets and protocol

Results

	Experimentals results	
	00000	
Data sets and protocol		

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results Data sets and protocol Results

Parsimonious Gaussian process models

Experimentals results

00000000000 Data sets and protocol

Data sets

- University of Pavia: 103 spectral bands, 9 classes and 42,776 referenced pixels.
- Kennedy Space Center: 224 spectral bands, 13 classes and 4,561 referenced pixels.
- Heves: 252 spectral bands, 16 classes and 360,953 pixels.

	Experimentals results	
Data sets and protocol		

Protocol

- [Fauvel et al., 2015]
- **5**0 training pixels for each class have been randomly selected from the samples.
- The remaining set of pixels has been used for validation to compute the correct classification rate.
- Repeated 20 times.
- Variables have been scaled between 0 and 1.
- Competitive methods
 - SVM
 - RF
 - Kernel-DA (M. Dundar and D. A. Landgrebe, 2004)
- Hyperparameters learn by 5-CV.

	Experimentals results	
	000000	
Results		

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

	Experimentals results	
	000000	

Classification accuracy

	Kappa coefficient		Process	ing time	e (s)	
	University	KSC	Heves	University	KSC	Heves
$p{\cal GP}_0$	0.768	0.920	0.664	18	31	148
$p{\cal GP}_1$	0.793	0.922	0.671	18	33	151
$p{\cal GP}_2$	0.617	0.844	0.588	18	31	148
$p{\cal GP}_3$	0.603	0.842	0.594	19	33	152
$p{\cal GP}_4$	0.661	0.870	0.595	19	34	152
$p{\cal GP}_5$	0.567	0.820	0.582	18	32	148
$p{\cal GP}_6$	0.610	0.845	0.583	19	34	152
$np {\cal GP}_0$	0.730	0.911	0.640	17	31	148
$np \mathcal{GP}_1$	0.792	0.921	0.677	18	33	151
$np {\cal GP}_2$	0.599	0.838	0.573	18	31	148
$np {\cal GP}_3$	0.578	0.817	0.585	19	33	152
$np \mathcal{GP}_4$	0.578	0.817	0.585	19	33	152
KDC	0.786	0.924	0.666	98	253	695
RF	0.646	0.853	0.585	3	3	18
SVM	0.799	0.928	0.658	10	28	171

Parsimonious Gaussian process model 00000000000000 Experimentals results

Conclusions and perspectives

$p\mathcal{GP}\mathsf{MRF}$

Remote Sensing Classification of hyperspectral imagery Spatial-spectral classification

Parsimonious Gaussian process models

Gaussian process in the feature space Parsimonious Gaussian process Model inference Link with existing models

Experimentals results

Data sets and protocol Results

and the second se

- Family of parsimonious Gaussian process models.
- Good performances wrt SVM and KDA
- Faster computation than previous KDA.
- $(n)p\mathcal{GP}_1$ perform the best.
- MRF extension.
- https://github.com/mfauvel/PGPDA
- Extension:
 - Non numerical data
 - Binary data
 - Unsupervised learning

References I

[Bouveyron et al., 2014] Bouveyron, C., Fauvel, M., and Girard, S. (2014). Kernel discriminant analysis and clustering with parsimonious gaussian process models. *Statistics and Computing*, pages 1–20.

[Camps-Valls and Bruzzone, 2009] Camps-Valls, G. and Bruzzone, L., editors (2009). *Kernel Methods for Remote Sensing Data Analysis.* Wiley.

[Dundar and Landgrebe, 2004] Dundar, M. and Landgrebe, D. A. (2004). Toward an optimal supervised classifier for the analysis of hyperspectral data. *IEEE Trans. Geoscience and Remote Sensing*, 42(1):271–277.

[Farag et al., 2005] Farag, A., Mohamed, R., and El-Baz, A. (2005).
 A unified framework for map estimation in remote sensing image segmentation.
 IEEE Trans. on Geoscience and Remote Sensing, 43(7):1617–1634.

[Fauvel et al., 2015] Fauvel, M., Bouveyron, C., and Girard, S. (2015).

Parsimonious gaussian process models for the classification of hyperspectral remote sensing images. *Geoscience and Remote Sensing Letters, IEEE*, 12(12):2423–2427.

References II

[Fauvel et al., 2013] Fauvel, M., Tarabalka, Y., Benediktsson, J. A., Chanussot, J., and Tilton, J. (2013). Advances in Spectral-Spatial Classification of Hyperspectral Images.

Proceedings of the IEEE, 101(3):652-675.

[Jimenez and Landgrebe, 1998] Jimenez, L. and Landgrebe, D. (1998).

Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 28(1):39-54.

[Moser and Serpico, 2013] Moser, G. and Serpico, S. (2013).

Combining support vector machines and markov random fields in an integrated framework for contextual image classification.

IEEE Trans. on Geoscience and Remote Sensing, 51(5):2734–2752.

[Pekalska and Haasdonk, 2009] Pekalska, E. and Haasdonk, B. (2009). Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Trans. Pattern Anal. Mach. Intell., 31(6):1017–1032.

[Solberg et al., 1996] Solberg, A., Taxt, T., and Jain, A. (1996). A markov random field model for classification of multisource satellite imagery.

Geoscience and Remote Sensing, IEEE Transactions on, 34(1):100–113.

References III

[Tarabalka et al., 2010] Tarabalka, Y., Fauvel, M., Chanussot, J., and Benediktsson, J. (2010). Svm- and mrf-based method for accurate classification of hyperspectral images. *IEEE Geoscience and Remote Sensing Letters*, 7(4):736–740.

[Xu et al., 2009] Xu, Z., Huang, K., Zhu, J., King, I., and Lyu, M. R. (2009). A novel kernel-based maximum a posteriori classification method. *Neural Netw.*, 22(7):977–987.